BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 51 (8), 2441—2442 (1978)

Infrared Spectra of ¹³C-Labelled Diphenylcyclopropenone and Related Derivatives

Yoshikazu Takehira and Fumio Toda*

Department of Industrial Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790 (Received January 23, 1978)

Synopsis. The infrared spectra of diphenylcyclopropenone-1-13C, its hydrate, 3-dicyanomethylene-1,2-diphenyl-1-cyclopropene-3-13C, and 4-(2,3-diphenylcyclopropenylidene)-2-(diphenylmethylene)-1,3-cyclobutanedione-1'-13C were studied.

Diphenylcyclopropenone (3) and related derivatives such as methylenecyclopropene (triafulvene) show complex IR bands. For example, 3 shows two strong bands at ca. 1850 and 1620 cm⁻¹, which were found to be mainly due to $\nu_{\rm C=0}$ and $\nu_{\rm C=0}$, respectively.¹⁾ For the sake of confirmation and assignment of the IR bands of the hydrate of 3 (4),²⁾ 3-dicyanomethylene-1,2-diphenyl-1-cyclopropene (5),³⁾ and 4-(2,3-diphenyl-cyclopropenylidene)-2-(diphenylmethylene)-1,3-cyclobutanedione (6),⁴⁾ ¹³C-labelled samples of these compounds were synthesized and their IR spectra were studied.

Experimental

13C-Labelled Compounds. Phenylacetic acid-1-13C (96.2 atom% 13C) was prepared by carbonation of phenylmagnesium bromide with 13CO₂ evolved from Ba¹³CO₃ (96.2 atom% 13C), according to the standard procedure of isotope experiment.⁵⁾ From the phenylacetic acid-1-13C, 3-1-13C was prepared successively via barium phenylacetate-1-13C, 1,3-diphenyl-2-propanone-2-13C (1-2-13C), and 1,3-dibromo-1, 3-diphenyl-2-propanone-2-13C (2-2-13C), according to the reported method⁶⁾ of preparation of non-labelled 3. In ¹³C-NMR spectrum, 3-1-13C showed a strong signal of the carbonyl carbon at 155.9 ppm (on CDCl₃, from TMS), which is comparable to that of 3, 155.7 ppm (in CDCl₃, from TMS).⁷⁾

Hydrate of 3-1-¹³C (4-1-¹³C) was prepared according to the procedure of Toda and Akagi.²⁾ 5-3-¹³C and 6-1-¹³C were prepared by the condensation of 3-1-¹³C with dicyanomethane and 2-diphenylmethylene-1,3-cyclobutanedione,⁴⁾ respectively, following the preparation of non-labelled 5³⁾ and 6.⁴⁾

IR Spectra. IR spectra were recorded with a Hitachi 285 grating spectrometer.

Results and Discussion

IR spectral data are summarized in Table 1. In the case of both 3 and 4, the bands at ca. 1850 cm⁻¹ shifts ca. 40 cm⁻¹ towards lower frequencies when C-1 is labelled with ¹³C, that at ca. 1620 cm⁻¹ ca. 15 cm⁻¹. The results show that the bands are mainly due to their $\nu_{\rm C=0}$ and $\nu_{\rm C=0}$, respectively. The observed $\Delta\nu_{\rm C=0}$ values agree with the calculated one, 41 cm⁻¹, for 1850 cm⁻¹ band on the basis of $\nu_{\rm C=0}^{12}/\nu_{\rm C=0}^{13}/\nu_{\rm C=0}^{13}$. Almost the same shift of $\nu_{\rm C=0}$ by ¹³C-labelling was observed for 1 and 2.

TABLE 1. IR SPECTRAL DATA (cm-1)

TABLE 1. IN SPECIFAL DATA (CIII -)				
Compound	State	ν(non- labelled)	ν (¹³C- labelled)	Δν
1	Neat	1724 ^{b)}	1679	45
		1715 ^b)	1674	41
2	Nujol $\left\{ ight.$	1725 ^b)	1690	35
		1723 ^{b)}	1684	39
3	Nujol {	· 1847ª)	1809	38
		1840ª)	1806	34
		1624ª)	1609	15
	l	1618ª)	1604	14
4	Nujol $\left\{ ight.$	1842ª)	1807	35
		1605ª)	1597	8
4	CCl_4 $\left\{\right.$	1861ª)	1817	44
		1640°)	1626	14
5	Nujol {	2206 ^{b)}	2207	1
		2197 ^{b)}	2198	1
		1872°)	1854	18
		1867°)	1849	18
6	$\mathbf{N}\mathbf{u}\mathbf{j}\mathbf{o}\mathbf{l}$	1888 ^d)	1888	0
		1847°)	1828	19
		1843°)	1821	22
		1756 ^d)	1757	1
		1659 ^{a)}	1659	0

a) Very strong. b) Strong. c) Medium. d) Weak.

Since the two bands of **5** at 1872 and 1867 cm⁻¹ shift 18 cm^{-1} towards lower frequencies with $^{13}\text{C-labelling}$, they seem to be mainly due to $\nu_{\text{C=0}}$ of exo-methylene moiety. However, a small shift of $\nu_{\text{C=N}}$ of **5**, 2206 and 2197 cm⁻¹, was observed. No band of $\nu_{\text{C=C}}$ of cyclopropene moiety of **5** could be detected. The medium bands of **6** at 1847 and 1843 cm⁻¹ would be mainly due to $\nu_{\text{C=C}}$ of exo-methylene of methylenecyclopropene moiety, since these bands of the $^{13}\text{C-labelled}$ sample appear at 19 and 22 cm⁻¹ frequencies lower than those of the unlabelled compounds, respectively. The very

strong band of **6** at 1659 cm⁻¹ not affected by ¹³C-labelling could be assigned to $\nu_{\rm C=0}$, since **7**⁴⁾ shows a similar $\nu_{\rm C=0}$ band at 1680 cm⁻¹. However, neither 1888 nor 1756 cm⁻¹ band could be assigned.

The authors wish to express their thanks to Professor Yoho Tsuno for his valuable suggestions on ¹³C-labelling experiment.

References

1) A. Krebs, B. Schrader, and F. Höfler, *Tetrahedron Lett.*, 1968, 5935.

- 2) F. Toda and K. Akagi, *Tetrahderon Lett.*, **1968**, 3735. Structural investigation of **4** by X-ray analysis has been reported; H. Tsukada, H. Shimanouchi, and Y. Sasada, *ibid.*, **1973**, 2455; H. L. Ammon, *J. Am. Chem. Soc.*, **95**, 7093 (1973).
- 3) Y. Kitahara and M. Funamizu, Bull. Chem. Soc., Jpn., 37, 1897 (1964).
 - 4) F. Toda, Chem. Lett., 1972, 621.
- 5) A. Murray and B. L. Williams, "Organic Synthesis with Isotopes," Part I, Interscience, New York (1958).
- 6) R. Breslow, T. Eicher, A. Krebs, and R. A. Peterson, J. Am. Chem. Soc., 87, 1320 (1965).
- 7) M. T. W. Hearn and K. T. Potts, J. Chem. Soc., Perkin Trans. 2, 1974, 1918.
 - 8) M. Halmann and S. Pinchas, J. Chem. Soc., 1958, 1703.